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Abstract- Identifying the victimized packets which are dropped 
in the router and revoking them for further utilization and also 
to protect from hackers. It is quite challenging to attribute a 
missing packet to a malevolent action because normal network 
congestion cannot produce the same effect. Static user-defined 
threshold and χ protocol approached this issue but it is 
fundamentally limiting, based on measured traffic rates and 
buffer sizes. This approach does not infer dynamically and here 
always a possibility of losing the packets. The number of 
congestive packet losses that will create an ambiguity. Once the 
ambiguity from congestion is removed, subsequent packet losses 
can be attributed to malevolent actions.  Setting this threshold is 
at the best is an art, and will certainly create unnecessary false 
positives or mask highly focused attacks. A compromised router 
is malevolently manipulating its stream of Multiple packets. We 
have designed and implemented a compromised router detection 
protocol that will dynamically infer the multiple packet losses, 
based on measured traffic rates and buffer sizes. This paper is 
distinguished between a router dropping packets malevolently 
and a router dropping packets due to congestion. The present 
work consists Adaptive RED algorithm for finding the default 
packets in short time. Automatically setting ARED parameters 
and maintains a predictable average queue size and reduces 
RED’s parameter sensitivity. 
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Introduction 
Network packet loss is a symptom that when we use ping 
command to query the target, and because of all kinds of 
reasons, data packets lost in the channel. The command ping 
uses ICMP echo request and echoplex reply messages. ICMP 
echoplex request message is a inquiry from host or router to a 
specified target host, and machine received the message must 
send back ICMP echoplex reply message to source host. This 
inquiry message is used to test if the target could be reached 
and get to know its state. It should be noted that the command 
ping is an example directly using network level ICMP without 
passing through transportation level UDP or TCP.Main 
reasons of Network packet loss are: physical connection 
failure, device failure, virus attacks, router message error and 
so on. Next let’s make an explanation with specific situation. 
Physical connection failure .Network administrator finds 
WAN connection on-and-off, when this happens, probably the 
connection line has some problem, or caused by users. To 
figure out if it is a connection failure, we can make the test 
below: If the WAN connection is realized by router, then 
login to router, and then test the router WAN connection by 

sending a mass of data packets. If it realize through three-
level switch, then separately connect a computer at both sides 
of the wire, and set their IP addresses as the WAN connection 
address of the three-level switch, and use the command “ping 
the IP address of the other side computer -t” to test. If no 
packet loss happens during the test, then it indicates that the 
wire provided is fine, probably the reason is caused by users, 
so you need further test. If packet loss happens during the test 
above, then it indicates the failure is caused by the circuitry, 
you should contact with the circuitry provider as soon as 
possible to solve the problem. As there are many symptoms of 
packet loss caused by physical circuit, such as fiber 
connection problems, like jumper is not aimed at device 
interface, twisted-pair and RJ-45 tie-in problems. Besides, 
LOC gets affected by noise with machine or outburst noises, 
so data message error may occur, radio frequency signal 
interruption and signal attenuation may cause the loss of data 
packet. We can test the circuitry quality with network test 
machine. 

I .INFERRING JAM-PACKED LOSS 

In construction a traffic validation protocol, it is necessary to 
explicitly resolve the ambiguity around packet losses. Should 
the absence of a given packet be seen as malicious or benign? 
In practice, there are three approaches for addressing this issue: 

 Static Threshold. Low rates of packet loss are 
assumed to be congestive, while rates above some 
predefined threshold are deemed malicious. 

 Traffic modeling. Packet loss rates are predicted as a 
function of traffic parameters and losses beyond the 
prediction are deemed malicious. 

 Traffic measurement. Individual packet losses are 
predicted as a function of measured traffic load and 
router buffer capacity. Deviations from these 
predictions are deemed malicious. 

Most traffic validation protocols, including WATCHERS, 
Secure Trace route , and our own work described in ,analyze  
aggregate traffic over some period of time in order to amortize 
monitoring overhead over many packets. For example, one 
validation protocol described in maintains packet counters in 
each router to detect if traffic flow is not conserved from 
source to destination. When a packet arrives at router r and is 
forwarded to a destination that will traverse a path segment 
ending at router x, r increments an outbound counter 
associated with router x. Conversely, when a packet arrives at 
router r, via a path segment beginning with router x, it 
increments its inbound counter 
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Associated with router x. periodically, router x sends a copy 
of its outbound counters to the associated routers for 
validation. Then, a given router r can compare the number of 
packets that x claims to have sent to r with the number of 
packets it counts as being received from x, and it can detect 
the number of packet losses. Thus, over some time window, a 
router simply knows that out of m packets sent, n were 
successfully received. To address congestion ambiguity, all of 
these systems employ a predefined threshold: if more than this 
number is dropped in a time interval, then one assumes that 
some router is compromised. However, this heuristic is 
fundamentally flawed: how does one choose the threshold? In 
order to avoid false positives, the threshold must be large 
enough to include the maximum number of possible 
congestive legitimate packet losses over a measurement 
interval. Thus, any compromised router can drop that many 
packets without being detected. Unfortunately, given the 
nature of the dominant TCP, even small numbers of losses can 
have significant impacts. Subtle attackers can selectively 
target the traffic flows of a single victim and within these 
flows only drop those packets that cause the most harm. For 
example, losing a TCP packet used in connection 
establishment has a disproportionate impact on a host because 
the retransmission time-out must necessarily be very long 
(typically 3 seconds or more). Other seemingly minor attacks 
that cause TCP time-outs can have similar effects—a class of 
attacks well described in . All things considered, it is clear that 
the static threshold mechanism is inadequate since it allows an 
attacker to mount vigorous attacks without being detected. 
Instead of using a static threshold, if the probability of 
congestive losses can be modeled, then one could resolve 
ambiguities by comparing measured loss rates to the rates 
predicted by the model. One approach for doing this is to 
predict congestion analytically as a function of individual 
traffic flow parameters, since TCP explicitly responds to 
congestion. Indeed, the behavior of TCP has been excessively 
studied .A simplified1 stochastic model of TCP congestion 
control yields the following famous square root formula: 

 
Where B is the throughput of the connection, RTT is the 
average round trip time, b is the number of packets that are 
acknowledged by one ACK, and p is the probability that a 
TCP packet is lost. The steady-state throughput of long-lived 
TCP flows can be described by this formula as a function of 
RTT and p. This formula is based on a constant loss 
probability, which is the simplest model, but others have 
extended this work to encompass a variety of loss processes. 
of these have been able to capture congestion behavior in all 
situations. Another approach is to model congestion for the 
aggregate capacity of a link. explore the question of “How 
much buffering do routers need?” A widely applied rule-of-
thumb suggests that routers must be able to buffer a full delay 
bandwidth product. This controversial paper argues that due to 
congestion control effects, the rule-of-thumb is wrong, and the 
amount of required buffering is proportional to the square root 
of the total number of TCP flows. To achieve this, the authors 
produced an analytic model of buffer occupancy as a function 

of TCP behavior. We have evaluated their model thoroughly 
and have communicated with the authors, who agree that their 
model is only a rough approximation that ignores many details 
of TCP, including time-outs, residual synchronization, and 
many other effects. Thus, while the analysis is robust enough 
to model buffer size it is not precise enough to predict 
congestive loss accurately. we have to measuring the 
interaction of traffic load and buffer occupancy explicitly. 
Given an output buffered first-in first-out (FIFO) router, 
congestion can be predicted precisely as a function of the 
inputs,), the capacity of the output buffer, and the speed of the 
output link. A packet will be lost only if packet input rates 
from all sources exceed the output link Speed for long enough. 
If such measurements are taken with high precision it should 
even be possible to predict individual packet losses. We 
restrict our discussion to output buffered switches for 
simplicity although the same approach can be extended to 
input buffered switches or virtual output queues with 
additional adjustments (and overhead). Because of some 
uncertainty in the system, we cannot predict exactly which 
individual packets will be dropped. So, our approach is still 
based on thresholds. Instead of being a threshold on rate, it is 
a threshold on a statistical measure: the amount of confidence 
that the drop was due to a malicious attack rather than from 
some normal router function.  

II. NET WORK MODEL 

Our work proceeds from an informed, yet abstracted, model of 
how the network is constructed, the capabilities of the attacker, 
and the complexities of the traffic validation problem. In this 
section we describe and motivate the assumptions underlying 
our model.  
Network Model:   We consider a network to consist of 
individual homogeneous routers interconnected via directional 
point-to-point links. This model is an intentional 
simplification of real networks (e.g., it does not include 
broadcast channels or independently failing network interfaces) 
but is sufficiently general to encompass such details if 
necessary. Within a network, we presume that packets are 
forwarded in a hop-by-hop fashion each router following the 
directions of a local forwarding table. As well, we assume that 
these forwarding tables are updated via a distributed link-state 
routing protocol such as OSPF or IS-IS. This is critical, as we 
depend on the routing protocol to provide each node with a 
global view of the current network topology. Finally, we also 
assume the administrative ability to assign and distribute 
shared keys to sets of nearby routers. This overall model is 
consistent with the typical construction of large enterprise IP 
networks or the internal structure of single ISP backbone 
networks, but is not well-suited for networks that are 
composed of multiple administrative domains using BGP. At 
this level of abstraction, we can assume a synchronous 
network model of synchronized clocks and bounded message 
delays. Our goal is to extend the routing protocol to detect 
compromised routers. If the network behaves asynchronously 
for too long, then the routing tables will be updated, thereby 
changing the network topology. This assumption is common 
to all protocols we know of that have addressed the problem 
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of detecting compromised routers. We define a path to be a 
finite sequence r1, r2,…,rn of adjacent routers. Operationally, 
a path defines a sequence of routers a packet can follow. We 
call the first router of the path the source and the last router its 
sink; together, these are called terminal routers. A path might 
consist of only one router, in which case the source and sink 
are the same. An x−path segment is a sequence of x 
consecutive routers that is a subsequence of a path. A path 
segment is an x−path segment for some value of x > 0. For 
example, if a network consists of the single path _a, b, c, d_ 
then _c, d_ and _b, c_ are both 2-path segments, but _a, c_ is 
not because a and c are not adjacent. We do not rely on source 
routing, as has been done by some work in the past [4, 20, 36]. 
We do assume some knowledge of the path a packet will take, 
at least in the stable state. In link state protocols, this can be 
problematic, because they can take advantage of multiple 
paths with equal cost for load balancing purposes. a router can 
predict the path a packet will take in the stable state based on 
its own routing tables and the hash functions. 
 
Threat Model:   We assume that attackers can compromise 
one or more routers in a network and may even compromise 
sets of adjacent routers as well. In general, we parameterize 
the strength of the adversary in terms of the maximum number 
of adjacent routers along a given path that can be 
compromised. However, we assume that between any two 
uncompromised routers that there is sufficient path diversity 
that the malicious routers do not partition the network. In 
some sense, this assumption is pedantic since it is impossible 
to guarantee any network communication across such a 
partition. Another way to view this constraint is that path 
diversity between two points in the network is a  

 
Fig.1: Validating the queue of an output interface.  
Necessary, but insufficient, condition for tolerating 
compromised routers. What we are proposing is a set of 
protocols that offer the sufficiency condition in the presence 
of the necessary diversity. Similarly, many enterprise 
networks are designed with such diversity in order to mask the 
impact of link failures. Consequently, we believe that this 
assumption is reasonable in practice. It is worth noting 
however, that this diversity usually does not extend to 
individual local-area networks single workstations rarely have 
multiple paths to their network infrastructure. Consequently, 
the fate of individual hosts and of the router to which they are 
connected, are directly intertwined in practice. So, we assume 
that a terminal router is not faulty with respect to traffic 
originating or being consumed by that router. Since link-state 
protocols operate by periodically measuring and disseminating 
information, we assume a synchronous system. The failure of 

a router is defined in terms of an interval of time, which in 
practice corresponds with a period of time during which 
traffic measurements are made. Specifically, a router r is 
traffic faulty with respect to a path segment π during τ if π 
contains r and, during the period of time τ, r exhibits 
anomalous behavior with respect to forwarding data that 
traverses π. For example, router r can selectively alter, 
misroute, drop, reorder, or delay the data that flows through π, 
and it can fabricate new data to send along π such that the 
packets, if they were valid, would have been routed through π.  

III. TRAFFIC VALIDATION 
Protocol χ detects traffic faulty routers by validating the queue 
of each output interface for each router. Given the buffer size 
and the rate at which traffic enters and exits a queue, the 
behavior of the queue is deterministic. If the actual behavior 
deviates from the predicted behavior, then a failure has 
occurred. We present the failure detection protocol in terms of 
the solutions of the distinct sub problems: traffic validation, 
distributed detection, and response. 
The first problem we address is traffic validation: what 
information is collected about traffic and how it is used to 
determine that a router has been compromised. Consider the 
queue Q in a router r associated with the output interface of 
link hr; rdi (see Fig. 1). The neighbor routers rs1; rs2; . . . ; rsn 
feed data into Q. We denote with T in f O(r,Qdir,∏,T)the traffic 
information collected by router r that traversed path segment  
over time interval T. Qdir is either Qin, meaning traffic into Q, 
or Qout, meaning traffic out of Q. At an abstract level, we 
present traffic, a validation mechanism associated with Q, as a 
predicate TV (Q,qpred,t, S;D), where : 

 qpred(t) is the predicted state of Q at time t. qpred(t) is 
initialized to 0 when the link <r; rd> is discovered 
and installed into the routing fabric. qpred is updated 
as part of traffic validation. . 

 
 
 
 
 
 
 
 
 
 

 S
 ={Vi  € {1,2,…,n}:Tin f o(rsi ,Qin, <rsi,r,rd>,T)}, 
is a set of information about traffic coming into Q as 
collected by neighbor routers. 

 D=T in f  O(rd,Qout,<r,rd>,T) is the traffic 
information 
about the outgoing traffic from Q collected at router 
rd. 

If routers rs1, rs2. . . rsn and rd are not protocol faulty, then 
TV (Q; qpred(t), S,D) evaluates to false if and only if r was 
traffic faulty and dropped packets maliciously during T. 
Tinfo(r,Qdir,∏,T)   can be represented in different ways.We 
use a set that contains, for each packet traversing Q, a three-

C single  = Prob(fp is maliciously dropped) 
          = Prob(there is enough space in the queue to 
buffer fp) 
          = Prob(qact(ts) + ps ≤ qlimit) 
          = Prob(X + qpred (ts) + ps ≤ qlimit) 
          = Prob(X≤qlimit – qpred (ts) – ps) 
          = Prob(Y ≤( (qlimit – qpred (ts) – ps - µ)/ ))) 
          = prob(Y≤y1) 
          = (1+ erf(y1/√2)/2) 
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tuple that includes: a fingerprint of the packet, the packet’s 
size, and the time that the packet entered or exited Q 
(depending on whether Qdir is Qin or Qout). For example, if at 
time t router rs transmits a packet of size ps bytes with a 
fingerprint fp, and the packet is to traverse ∏,then rs computes 
when the packet will enter Q based on the packet’s 
transmission and propagation delay. Given a  link delay d and 
link bandwidth  associated with the link hrs; ri, the time stamp 
for the packet is t þ d þ ps=bw.TV can be implemented by 
simulating the behavior of Q. Let P be a priority queue, sorted 
by increasing time stamp. All the traffic  information S and D 
are inserted into P along with the identity of the set (S or D) 
from which the information came. Then, P is enumerated. For 
each packet in P with a fingerprint fp, size ps, and a time 
stamp ts, qpred is updated as follows. Assume t is the time 
stamp of the packet evaluated prior to the current one: 

 If fp came from D, then the packet is leaving  
Q : qpred(ts) := qpred (t)- ps. 

 If fp came from S and (fp € D), then the packet fp is 
entering and will exit: qpred(ts) := qpred(t)+ ps. 

 If fp came from S and (fp €D), then the packet fp is 
entering into Q and the packet fp will not be 
transmitted in the future: qpred(ts) is unchanged, and 
the packet is dropped. 
– If qlimit < qpred(t)+ ps, where qlimit is the buffer limit 
of Q, then the packet is dropped due to congestion. 
– Otherwise, the packet is dropped due to malicious 
attack. 

III.1 One packet losses test 
If a packet with fingerprint fp and size ps is dropped at time ts 
when the predicted queue length is qpred (ts), then we raise an 
alarm with a confidence value csingle, which is the probability 
of the packet being dropped maliciously. csingle is computed. 
The mean µ and standard deviation  of X can be determined 
by monitoring during a learning period. We do not expect µ 
and  to change much over time, because they are in turn 
determined by values that themselves do not change much 
over time. Hence, the learning period need not be done very 
often. A malicious router is detected if the confidence value 
csingle is at least as large as a target significance level 
slevel

single. 
Random variable X=qact(ts)-qpred(ts)With mean µ and standard 
deviation  .Random variable Y = (X-µ)/ y 1=qlimit –qpred (ts)-
ps-µ/ , erf is the error function. 

III.2 Multiple packet losses test 
Z- test1 is useful when more than one packet is dropped during 
a round and the first test does not detect a malicious router.Let 
L be the set of n > 1 packets dropped during the last time 
interval. For the packets in L, let ps be the mean of the packet 
sizes, qpred be the mean of qpred(ts) (the predicted queue 
length), and qact be the mean of qact(ts) (the actual queue 
length) over the times the packets were dropped.We test the 
following hypothesis: “The packets are lost due to malicious 
attack”: µ > qlimit _ qpred _ ps. The Z-test score is  

z1=(qlimit – qpred –ps - µ) 
                                          row √n 

For the standard normal distribution Z, the probability of 
Prob(Z < z1) gives the confidence value ccombined for the 
hypothesis. A malicious router is detected if ccombined is at least 
as large as a target significance level slevel

combined. 
One can question using a Z-test in this way because the set of 
dropped packets are not a simple random sample. But, this test 
is used when there are packets being dropped and the first test 
determined that they were consistent with congestion loss. 
Hence, the router is under load during the short period the 
measurement was taken and most of the points, both for 
dropped packets and for non dropped packets, should have a 
nearly full Q 

III.3 Distributed Finding  
Since the behavior of the queue is deterministic, the traffic 
validation mechanisms detect traffic faulty routers whenever 
the actual behavior of the queue deviates from the predicted 
behavior. However, a faulty router can also be protocol faulty: 
it can behave arbitrarily with respect to the protocol, by 
dropping or altering the control messages of χ.We masks the 
effect of protocol faulty routers using distributed 
detection.Given TV , we need to distribute the necessary 
traffic information among the routers and implement a 
distributed detection protocol. Every outbound interface queue 
Q in the network is monitored by the neighboring routers and 
validated by a router rd such that Q is associated with the link 
<r; d>.With respect to a given Q, the routers involved in 
detection are (as shown in Fig. 1) 

 rs, which sends traffic into Q to be forwarded. 
 r, which hosts Q. 
 rd, which is the router to which Q’s outgoing traffic 

is forwarded. 
Each involved router has a different role, as described below. 
3.3.1 Traffic Information Collection 
Each router collects the following traffic information during 
a time interval T: 

  rs: Collect Tinfo(rs,Qin;<rs,r, rd>,T). 
  r: Collect Tinfo(rs,Qin;<rs,r, rd>,T).This information 

is used to check the transit traffic information 
sent by the rs routers. 

 rd: Collect Tinfo(rd;Qout; <r; rd>,T). 
3.3.2 Information Dissemination and Detection 

 rs: At the end of each time interval T, router rs,sends 
[T in f O(rs.,Qin; <rs.,r.rd>,T)]rs. That it has 
collected.[M]x is a message M digitally signed by x. 
Digital signatures are required for integrity and 
authenticity against message tampering. 

IV. THE ADAPTIVE RANDOM EARLY DETECTION 
The overall guidelines for Adaptive RED as implemented here 
are the same as those for the original Adaptive RED, that is, of 
adapting MAXp to keep the average queue size between MINth 
and MAXth. Our approach differs from original Adaptive RED 
in four ways: 

 MAXP is adapted not just to keep the average queue 
size between MINth and MAXth but to keep the 
average queue size within a target range half way 
between MINth and MAXth . 
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 MAXP is adapted slowly, over time scales greater 
than a typical round-trip time, and in small steps. 

 MAXP is constrained to remain within the range [0.01, 
0.5] (or equivalently, [1%, 50%]). 

 Instead of multiplicatively increasing and decreasing 
MAXP we use an additive-increase multiplicative 
decrease (AIMD) policy. 
 

The guideline of adapting MAXP slowly and infrequently 
allows the dynamics of RED of adapting the packet dropping 
probability in response to changes in the average queue size—
to dominate on smaller time scales. The adaption of MAXP  is 
invoked only as needed over longer time scales. 
The robustness of Adaptive RED comes from its slow and 
infrequent adjustments of maxp.The price of this slow 
modification is that after a sharp change in the level of 
congestion, it could take some time, possibly ten or twenty 
seconds, before max p adapts to its new value. To ensure that 
the performance of Adaptive RED will not be unduly 
degraded during this transition period, our third guideline 
restricts max p to stay within the range [0.01, 0.5]. This 
ensures that during the transition period the overall 
performance of RED should still be acceptable, even though 
the 

The algorithm for Adaptive RED is given in Figure :2 
average queue size might not be in its target range, and the 
average delay or throughput might suffer slightly. We do not 
claim that our algorithm for Adaptive RED is optimal, or even 
close to optimal, but it seems to work well in a wide range of 
scenarios, and we believe that it could Safely be deployed 
now in RED implementations in the Internet. As a result of the 
slow adaptation of maxp ,  the design of Adaptive RED gives 
robust performance in a wide range of environments. As 
stated above, the cost of this slow adaptation is that of a 
transient period, after a sharp change in the level of 
congestion, when the average queue size is not within the 
target zone. Adaptive RED is thus consciously positioned in 

the conservative, robust end of the spectrum of AQM 
mechanisms, with the aim of avoiding the more finely-tuned 
but also more fragile dynamics at the more aggressive end of 
the spectrum. 

Adaptive RED’s algorithm in Figure :2 uses AIMD 
to adapt maxp while we experimented with other linear 
controls such as MIMD (Multiplicative Increase 
Multiplicative Decrease) as well as proportional error controls, 
as might be suggested by some control-theoretic analyses; our 
experiences have been that the AIMD approach is more robust. 
IV.1 The range for maxp 
The upper bound of 0.5 on maxp can be justified on two 
grounds. First, we are not trying to optimize RED for packet 
drop rates greater than 50%. In addition, because we use RED 
in gentle mode, this means that the packet drop rate varies 
from 1 to  maxp as the average queue size varies from minth to 
maxth, and the packet drop rate varies from max p to as the 
average queue size varies from maxth to twice maxth.  With 
maxp set to 0.5, the packet drop rate varies from 0 to 1 as the 
average queue size varies from minth to twice maxth. This 
should give somewhat robust performance even with packet 
drop rates greater than 50%. The upper bound of 0.5 on max p 
means that when the packet drop rate exceeds 25%, the 
average queue size could exceed the target range by up to a 
factor of four4 
IV.2 The Parameters  and  

We note that it takes at least 0.49/  intervals for maxp to 
increase from 0.01 to 0.50; this is 24.5 seconds for out fault 
parameters for  and interval  similarly, it takes at least log 

0.02/log  interval for maxp to decrease from 0.50 to 0.01; 

with our default parameters, this is 20.1 seconds. Given a 
sharp change from one level of congestion to another, 258 
seconds is therefore a upper bound on the interval during 
which the average queue size could be outside its target range 
and the performance of the AQM might be some what 
degraded. Thus assuming p < maxp, when maxp increases by , 
avg can be expected to decrease from  

to  

. This is  

a decrease of .  
As long as this is less than 0.2 (maxth-mi th), the average queue 
size should not change from above the target range to below 
the target range in a single interval. This suggests choosing 

   < 0.2, or equivalently.  < 0.25 maxp. Our 

default setting of  obeys this constraint. 
IV.3 setting RED parameters maxth and wq 
As described above, Adaptive RED removes RED’s 
dependence on the parameter maxp to reduce the need for 
other parameter-tuning for RED, we also specify procedures 
for automatically setting the RED parameters maxth  and  wq. 
The guidelines for setting wq given in the original RED are in 

Every Interval seconds: 
If (avg >target and maxp ≤ 0.5) 
Increase max p: 
maxp maxp +  
elseif (avg<target and maxp ≥0.01) 
decrease maxp: 
maxp maxp * ; 
Variables: 
avg : average queue size 
fixed parameters: 
interval :time 0.5 seconds 
target : target for avg; 
[minth + 0.4 * (maxth – minth),minth+0.6 *(maxth 
– minth)]. 

 : increment; min(0.01, maxp/4 
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terms of the transient queue size accommodated by RED, and 
the time required by the estimator to respond to a step change 
in the actual queue size. if the queue size changes from one 
value to another, it takes            -1/ln(1-wq) packet arrivals for 
the average queue to reach 63% of the way to the new value. 
Thus, we refer to -1/ln(1-wq) as the “time constant” of the 
estimator for the average queue size, even though this “time 
constant” is specified in packet arrivals and not in time itself. 
The default in the NS simulator is for wq to be set to 0.002; 
this corresponds to a time constant of 500 packet 
arrivals. However, for a 1 Gbps link with 500-byte 
packets,500 packet arrivals corresponds to a small fraction of 
a round-trip time (1/50-th of an assumed round-trip time of 
100 ms). For RED in automatic mode, we set wq to give a 
time constant for the average queue size estimator of one 
second; this is equivalent to ten round-trip times, assuming a 
default round-trip time of 100 ms. Thus, we set       

 
Where C is the link capacity in packets / second, computed for 
packets of the specified default size. 

V. SIMULATIONS 
The simulations that Adaptive RED, by automatically setting 
wq. and continually adapting maxp achieves the goals of high 
throughput and low average queuing delays across a wide 
variety of conditions. In this section we more closely examine 
three aspects Adaptive RED’s behavior: oscillations, effects of 
wq and response to routing dynamics. 
V.1 Exploring Oscillations 
 The feedback nature of TCP’s congestion control, oscillations   
in the queue length are very common. Some oscillations are 
“malignant”, in that they degrade overall throughput and 
increase variance in queuing delay; other oscillations are 
“benign” oscillations and do not significantly effect either 
throughput or delay. 

VI. CONCLUSION 
However indentifying, validating and resending the dropped 
packets is typical but necessary task to minimize the loss of 
data. ARED allow us to identify and resend the data to their 
respective destinations by validating them with Chi-Square. 
Loop of this algorithm dynamically changes its parameter 
value to start the range of identification from beginning (0.01). 
Re-starting the loop takes time to change the parameter value 
and it depends on size of the dropped packets in queue. Due to 
change in average queue size the response time will be slow 
and infrequently changes. ARED is not optimal but it seems to 
work well in a wide range of scenarios and it also controls the 
proportional errors. ARED algorithm cannot identify the 
dropped packets if the packet(s) size is ranges from 0.01 to 0.5 
(1% and 50% respectively).  It also increases the range value 
in the next sprint of the algorithm but it cannot reach to 100% 
due to limit of link capacity. In future work, to explore the use 
of Adaptive RED in virtual queues with goal of providing 
minimal average queuing delays. 
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