
Detecting multiple malevolent packet losses
Sridhar kumar.Majoju#1, D.Sagar*2, T.P.Shekar#3
#Computer Science and Engineeringt,JNT University

Sree chaitanya college of Engineering, ,karimnagar, Andhra Pradesh ,INDIA-505527.
*sree chaitanya college of engineering

 karimnagar,andhar Pradesh,INDIA-505527.

Abstract- Identifying the victimized packets which are dropped
in the router and revoking them for further utilization and also
to protect from hackers. It is quite challenging to attribute a
missing packet to a malevolent action because normal network
congestion cannot produce the same effect. Static user-defined
threshold and χ protocol approached this issue but it is
fundamentally limiting, based on measured traffic rates and
buffer sizes. This approach does not infer dynamically and here
always a possibility of losing the packets. The number of
congestive packet losses that will create an ambiguity. Once the
ambiguity from congestion is removed, subsequent packet losses
can be attributed to malevolent actions. Setting this threshold is
at the best is an art, and will certainly create unnecessary false
positives or mask highly focused attacks. A compromised router
is malevolently manipulating its stream of Multiple packets. We
have designed and implemented a compromised router detection
protocol that will dynamically infer the multiple packet losses,
based on measured traffic rates and buffer sizes. This paper is
distinguished between a router dropping packets malevolently
and a router dropping packets due to congestion. The present
work consists Adaptive RED algorithm for finding the default
packets in short time. Automatically setting ARED parameters
and maintains a predictable average queue size and reduces
RED’s parameter sensitivity.

Keywords— intrusion detection, distributed systems, reliable net
works, malevolent routers, multiple packet losses, router, ARED.

Introduction
Network packet loss is a symptom that when we use ping
command to query the target, and because of all kinds of
reasons, data packets lost in the channel. The command ping
uses ICMP echo request and echoplex reply messages. ICMP
echoplex request message is a inquiry from host or router to a
specified target host, and machine received the message must
send back ICMP echoplex reply message to source host. This
inquiry message is used to test if the target could be reached
and get to know its state. It should be noted that the command
ping is an example directly using network level ICMP without
passing through transportation level UDP or TCP.Main
reasons of Network packet loss are: physical connection
failure, device failure, virus attacks, router message error and
so on. Next let’s make an explanation with specific situation.
Physical connection failure .Network administrator finds
WAN connection on-and-off, when this happens, probably the
connection line has some problem, or caused by users. To
figure out if it is a connection failure, we can make the test
below: If the WAN connection is realized by router, then
login to router, and then test the router WAN connection by

sending a mass of data packets. If it realize through three-
level switch, then separately connect a computer at both sides
of the wire, and set their IP addresses as the WAN connection
address of the three-level switch, and use the command “ping
the IP address of the other side computer -t” to test. If no
packet loss happens during the test, then it indicates that the
wire provided is fine, probably the reason is caused by users,
so you need further test. If packet loss happens during the test
above, then it indicates the failure is caused by the circuitry,
you should contact with the circuitry provider as soon as
possible to solve the problem. As there are many symptoms of
packet loss caused by physical circuit, such as fiber
connection problems, like jumper is not aimed at device
interface, twisted-pair and RJ-45 tie-in problems. Besides,
LOC gets affected by noise with machine or outburst noises,
so data message error may occur, radio frequency signal
interruption and signal attenuation may cause the loss of data
packet. We can test the circuitry quality with network test
machine.

I .INFERRING JAM-PACKED LOSS

In construction a traffic validation protocol, it is necessary to
explicitly resolve the ambiguity around packet losses. Should
the absence of a given packet be seen as malicious or benign?
In practice, there are three approaches for addressing this issue:

 Static Threshold. Low rates of packet loss are
assumed to be congestive, while rates above some
predefined threshold are deemed malicious.

 Traffic modeling. Packet loss rates are predicted as a
function of traffic parameters and losses beyond the
prediction are deemed malicious.

 Traffic measurement. Individual packet losses are
predicted as a function of measured traffic load and
router buffer capacity. Deviations from these
predictions are deemed malicious.

Most traffic validation protocols, including WATCHERS,
Secure Trace route , and our own work described in ,analyze
aggregate traffic over some period of time in order to amortize
monitoring overhead over many packets. For example, one
validation protocol described in maintains packet counters in
each router to detect if traffic flow is not conserved from
source to destination. When a packet arrives at router r and is
forwarded to a destination that will traverse a path segment
ending at router x, r increments an outbound counter
associated with router x. Conversely, when a packet arrives at
router r, via a path segment beginning with router x, it
increments its inbound counter

Sridhar kumar.Majoju et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (4) , 2011, 1549-1554

1549

Associated with router x. periodically, router x sends a copy
of its outbound counters to the associated routers for
validation. Then, a given router r can compare the number of
packets that x claims to have sent to r with the number of
packets it counts as being received from x, and it can detect
the number of packet losses. Thus, over some time window, a
router simply knows that out of m packets sent, n were
successfully received. To address congestion ambiguity, all of
these systems employ a predefined threshold: if more than this
number is dropped in a time interval, then one assumes that
some router is compromised. However, this heuristic is
fundamentally flawed: how does one choose the threshold? In
order to avoid false positives, the threshold must be large
enough to include the maximum number of possible
congestive legitimate packet losses over a measurement
interval. Thus, any compromised router can drop that many
packets without being detected. Unfortunately, given the
nature of the dominant TCP, even small numbers of losses can
have significant impacts. Subtle attackers can selectively
target the traffic flows of a single victim and within these
flows only drop those packets that cause the most harm. For
example, losing a TCP packet used in connection
establishment has a disproportionate impact on a host because
the retransmission time-out must necessarily be very long
(typically 3 seconds or more). Other seemingly minor attacks
that cause TCP time-outs can have similar effects—a class of
attacks well described in . All things considered, it is clear that
the static threshold mechanism is inadequate since it allows an
attacker to mount vigorous attacks without being detected.
Instead of using a static threshold, if the probability of
congestive losses can be modeled, then one could resolve
ambiguities by comparing measured loss rates to the rates
predicted by the model. One approach for doing this is to
predict congestion analytically as a function of individual
traffic flow parameters, since TCP explicitly responds to
congestion. Indeed, the behavior of TCP has been excessively
studied .A simplified1 stochastic model of TCP congestion
control yields the following famous square root formula:

Where B is the throughput of the connection, RTT is the
average round trip time, b is the number of packets that are
acknowledged by one ACK, and p is the probability that a
TCP packet is lost. The steady-state throughput of long-lived
TCP flows can be described by this formula as a function of
RTT and p. This formula is based on a constant loss
probability, which is the simplest model, but others have
extended this work to encompass a variety of loss processes.
of these have been able to capture congestion behavior in all
situations. Another approach is to model congestion for the
aggregate capacity of a link. explore the question of “How
much buffering do routers need?” A widely applied rule-of-
thumb suggests that routers must be able to buffer a full delay
bandwidth product. This controversial paper argues that due to
congestion control effects, the rule-of-thumb is wrong, and the
amount of required buffering is proportional to the square root
of the total number of TCP flows. To achieve this, the authors
produced an analytic model of buffer occupancy as a function

of TCP behavior. We have evaluated their model thoroughly
and have communicated with the authors, who agree that their
model is only a rough approximation that ignores many details
of TCP, including time-outs, residual synchronization, and
many other effects. Thus, while the analysis is robust enough
to model buffer size it is not precise enough to predict
congestive loss accurately. we have to measuring the
interaction of traffic load and buffer occupancy explicitly.
Given an output buffered first-in first-out (FIFO) router,
congestion can be predicted precisely as a function of the
inputs,), the capacity of the output buffer, and the speed of the
output link. A packet will be lost only if packet input rates
from all sources exceed the output link Speed for long enough.
If such measurements are taken with high precision it should
even be possible to predict individual packet losses. We
restrict our discussion to output buffered switches for
simplicity although the same approach can be extended to
input buffered switches or virtual output queues with
additional adjustments (and overhead). Because of some
uncertainty in the system, we cannot predict exactly which
individual packets will be dropped. So, our approach is still
based on thresholds. Instead of being a threshold on rate, it is
a threshold on a statistical measure: the amount of confidence
that the drop was due to a malicious attack rather than from
some normal router function.

II. NET WORK MODEL

Our work proceeds from an informed, yet abstracted, model of
how the network is constructed, the capabilities of the attacker,
and the complexities of the traffic validation problem. In this
section we describe and motivate the assumptions underlying
our model.
Network Model: We consider a network to consist of
individual homogeneous routers interconnected via directional
point-to-point links. This model is an intentional
simplification of real networks (e.g., it does not include
broadcast channels or independently failing network interfaces)
but is sufficiently general to encompass such details if
necessary. Within a network, we presume that packets are
forwarded in a hop-by-hop fashion each router following the
directions of a local forwarding table. As well, we assume that
these forwarding tables are updated via a distributed link-state
routing protocol such as OSPF or IS-IS. This is critical, as we
depend on the routing protocol to provide each node with a
global view of the current network topology. Finally, we also
assume the administrative ability to assign and distribute
shared keys to sets of nearby routers. This overall model is
consistent with the typical construction of large enterprise IP
networks or the internal structure of single ISP backbone
networks, but is not well-suited for networks that are
composed of multiple administrative domains using BGP. At
this level of abstraction, we can assume a synchronous
network model of synchronized clocks and bounded message
delays. Our goal is to extend the routing protocol to detect
compromised routers. If the network behaves asynchronously
for too long, then the routing tables will be updated, thereby
changing the network topology. This assumption is common
to all protocols we know of that have addressed the problem

Sridhar kumar.Majoju et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (4) , 2011, 1549-1554

1550

of detecting compromised routers. We define a path to be a
finite sequence r1, r2,…,rn of adjacent routers. Operationally,
a path defines a sequence of routers a packet can follow. We
call the first router of the path the source and the last router its
sink; together, these are called terminal routers. A path might
consist of only one router, in which case the source and sink
are the same. An x−path segment is a sequence of x
consecutive routers that is a subsequence of a path. A path
segment is an x−path segment for some value of x > 0. For
example, if a network consists of the single path _a, b, c, d_
then _c, d_ and _b, c_ are both 2-path segments, but _a, c_ is
not because a and c are not adjacent. We do not rely on source
routing, as has been done by some work in the past [4, 20, 36].
We do assume some knowledge of the path a packet will take,
at least in the stable state. In link state protocols, this can be
problematic, because they can take advantage of multiple
paths with equal cost for load balancing purposes. a router can
predict the path a packet will take in the stable state based on
its own routing tables and the hash functions.

Threat Model: We assume that attackers can compromise
one or more routers in a network and may even compromise
sets of adjacent routers as well. In general, we parameterize
the strength of the adversary in terms of the maximum number
of adjacent routers along a given path that can be
compromised. However, we assume that between any two
uncompromised routers that there is sufficient path diversity
that the malicious routers do not partition the network. In
some sense, this assumption is pedantic since it is impossible
to guarantee any network communication across such a
partition. Another way to view this constraint is that path
diversity between two points in the network is a

Fig.1: Validating the queue of an output interface.
Necessary, but insufficient, condition for tolerating
compromised routers. What we are proposing is a set of
protocols that offer the sufficiency condition in the presence
of the necessary diversity. Similarly, many enterprise
networks are designed with such diversity in order to mask the
impact of link failures. Consequently, we believe that this
assumption is reasonable in practice. It is worth noting
however, that this diversity usually does not extend to
individual local-area networks single workstations rarely have
multiple paths to their network infrastructure. Consequently,
the fate of individual hosts and of the router to which they are
connected, are directly intertwined in practice. So, we assume
that a terminal router is not faulty with respect to traffic
originating or being consumed by that router. Since link-state
protocols operate by periodically measuring and disseminating
information, we assume a synchronous system. The failure of

a router is defined in terms of an interval of time, which in
practice corresponds with a period of time during which
traffic measurements are made. Specifically, a router r is
traffic faulty with respect to a path segment π during τ if π
contains r and, during the period of time τ, r exhibits
anomalous behavior with respect to forwarding data that
traverses π. For example, router r can selectively alter,
misroute, drop, reorder, or delay the data that flows through π,
and it can fabricate new data to send along π such that the
packets, if they were valid, would have been routed through π.

III. TRAFFIC VALIDATION
Protocol χ detects traffic faulty routers by validating the queue
of each output interface for each router. Given the buffer size
and the rate at which traffic enters and exits a queue, the
behavior of the queue is deterministic. If the actual behavior
deviates from the predicted behavior, then a failure has
occurred. We present the failure detection protocol in terms of
the solutions of the distinct sub problems: traffic validation,
distributed detection, and response.
The first problem we address is traffic validation: what
information is collected about traffic and how it is used to
determine that a router has been compromised. Consider the
queue Q in a router r associated with the output interface of
link hr; rdi (see Fig. 1). The neighbor routers rs1; rs2; . . . ; rsn
feed data into Q. We denote with T in f O(r,Qdir,∏,T)the traffic
information collected by router r that traversed path segment
over time interval T. Qdir is either Qin, meaning traffic into Q,
or Qout, meaning traffic out of Q. At an abstract level, we
present traffic, a validation mechanism associated with Q, as a
predicate TV (Q,qpred,t, S;D), where :

 qpred(t) is the predicted state of Q at time t. qpred(t) is
initialized to 0 when the link <r; rd> is discovered
and installed into the routing fabric. qpred is updated
as part of traffic validation. .

 S
 ={Vi € {1,2,…,n}:Tin f o(rsi ,Qin, <rsi,r,rd>,T)},
is a set of information about traffic coming into Q as
collected by neighbor routers.

 D=T in f O(rd,Qout,<r,rd>,T) is the traffic
information
about the outgoing traffic from Q collected at router
rd.

If routers rs1, rs2. . . rsn and rd are not protocol faulty, then
TV (Q; qpred(t), S,D) evaluates to false if and only if r was
traffic faulty and dropped packets maliciously during T.
Tinfo(r,Qdir,∏,T) can be represented in different ways.We
use a set that contains, for each packet traversing Q, a three-

C single = Prob(fp is maliciously dropped)
 = Prob(there is enough space in the queue to
buffer fp)
 = Prob(qact(ts) + ps ≤ qlimit)
 = Prob(X + qpred (ts) + ps ≤ qlimit)
 = Prob(X≤qlimit – qpred (ts) – ps)
 = Prob(Y ≤((qlimit – qpred (ts) – ps - µ)/)))
 = prob(Y≤y1)
 = (1+ erf(y1/√2)/2)

Sridhar kumar.Majoju et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (4) , 2011, 1549-1554

1551

tuple that includes: a fingerprint of the packet, the packet’s
size, and the time that the packet entered or exited Q
(depending on whether Qdir is Qin or Qout). For example, if at
time t router rs transmits a packet of size ps bytes with a
fingerprint fp, and the packet is to traverse ∏,then rs computes
when the packet will enter Q based on the packet’s
transmission and propagation delay. Given a link delay d and
link bandwidth associated with the link hrs; ri, the time stamp
for the packet is t þ d þ ps=bw.TV can be implemented by
simulating the behavior of Q. Let P be a priority queue, sorted
by increasing time stamp. All the traffic information S and D
are inserted into P along with the identity of the set (S or D)
from which the information came. Then, P is enumerated. For
each packet in P with a fingerprint fp, size ps, and a time
stamp ts, qpred is updated as follows. Assume t is the time
stamp of the packet evaluated prior to the current one:

 If fp came from D, then the packet is leaving
Q : qpred(ts) := qpred (t)- ps.

 If fp came from S and (fp € D), then the packet fp is
entering and will exit: qpred(ts) := qpred(t)+ ps.

 If fp came from S and (fp €D), then the packet fp is
entering into Q and the packet fp will not be
transmitted in the future: qpred(ts) is unchanged, and
the packet is dropped.
– If qlimit < qpred(t)+ ps, where qlimit is the buffer limit
of Q, then the packet is dropped due to congestion.
– Otherwise, the packet is dropped due to malicious
attack.

III.1 One packet losses test
If a packet with fingerprint fp and size ps is dropped at time ts
when the predicted queue length is qpred (ts), then we raise an
alarm with a confidence value csingle, which is the probability
of the packet being dropped maliciously. csingle is computed.
The mean µ and standard deviation of X can be determined
by monitoring during a learning period. We do not expect µ
and to change much over time, because they are in turn
determined by values that themselves do not change much
over time. Hence, the learning period need not be done very
often. A malicious router is detected if the confidence value
csingle is at least as large as a target significance level
slevel

single.
Random variable X=qact(ts)-qpred(ts)With mean µ and standard
deviation .Random variable Y = (X-µ)/ y 1=qlimit –qpred (ts)-
ps-µ/ , erf is the error function.

III.2 Multiple packet losses test
Z- test1 is useful when more than one packet is dropped during
a round and the first test does not detect a malicious router.Let
L be the set of n > 1 packets dropped during the last time
interval. For the packets in L, let ps be the mean of the packet
sizes, qpred be the mean of qpred(ts) (the predicted queue
length), and qact be the mean of qact(ts) (the actual queue
length) over the times the packets were dropped.We test the
following hypothesis: “The packets are lost due to malicious
attack”: µ > qlimit _ qpred _ ps. The Z-test score is

z1=(qlimit – qpred –ps - µ)
 row √n

For the standard normal distribution Z, the probability of
Prob(Z < z1) gives the confidence value ccombined for the
hypothesis. A malicious router is detected if ccombined is at least
as large as a target significance level slevel

combined.
One can question using a Z-test in this way because the set of
dropped packets are not a simple random sample. But, this test
is used when there are packets being dropped and the first test
determined that they were consistent with congestion loss.
Hence, the router is under load during the short period the
measurement was taken and most of the points, both for
dropped packets and for non dropped packets, should have a
nearly full Q

III.3 Distributed Finding
Since the behavior of the queue is deterministic, the traffic
validation mechanisms detect traffic faulty routers whenever
the actual behavior of the queue deviates from the predicted
behavior. However, a faulty router can also be protocol faulty:
it can behave arbitrarily with respect to the protocol, by
dropping or altering the control messages of χ.We masks the
effect of protocol faulty routers using distributed
detection.Given TV , we need to distribute the necessary
traffic information among the routers and implement a
distributed detection protocol. Every outbound interface queue
Q in the network is monitored by the neighboring routers and
validated by a router rd such that Q is associated with the link
<r; d>.With respect to a given Q, the routers involved in
detection are (as shown in Fig. 1)

 rs, which sends traffic into Q to be forwarded.
 r, which hosts Q.
 rd, which is the router to which Q’s outgoing traffic

is forwarded.
Each involved router has a different role, as described below.
3.3.1 Traffic Information Collection
Each router collects the following traffic information during
a time interval T:

 rs: Collect Tinfo(rs,Qin;<rs,r, rd>,T).
 r: Collect Tinfo(rs,Qin;<rs,r, rd>,T).This information

is used to check the transit traffic information
sent by the rs routers.

 rd: Collect Tinfo(rd;Qout; <r; rd>,T).
3.3.2 Information Dissemination and Detection

 rs: At the end of each time interval T, router rs,sends
[T in f O(rs.,Qin; <rs.,r.rd>,T)]rs. That it has
collected.[M]x is a message M digitally signed by x.
Digital signatures are required for integrity and
authenticity against message tampering.

IV. THE ADAPTIVE RANDOM EARLY DETECTION
The overall guidelines for Adaptive RED as implemented here
are the same as those for the original Adaptive RED, that is, of
adapting MAXp to keep the average queue size between MINth
and MAXth. Our approach differs from original Adaptive RED
in four ways:

 MAXP is adapted not just to keep the average queue
size between MINth and MAXth but to keep the
average queue size within a target range half way
between MINth and MAXth .

Sridhar kumar.Majoju et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (4) , 2011, 1549-1554

1552

 MAXP is adapted slowly, over time scales greater
than a typical round-trip time, and in small steps.

 MAXP is constrained to remain within the range [0.01,
0.5] (or equivalently, [1%, 50%]).

 Instead of multiplicatively increasing and decreasing
MAXP we use an additive-increase multiplicative
decrease (AIMD) policy.

The guideline of adapting MAXP slowly and infrequently
allows the dynamics of RED of adapting the packet dropping
probability in response to changes in the average queue size—
to dominate on smaller time scales. The adaption of MAXP is
invoked only as needed over longer time scales.
The robustness of Adaptive RED comes from its slow and
infrequent adjustments of maxp.The price of this slow
modification is that after a sharp change in the level of
congestion, it could take some time, possibly ten or twenty
seconds, before max p adapts to its new value. To ensure that
the performance of Adaptive RED will not be unduly
degraded during this transition period, our third guideline
restricts max p to stay within the range [0.01, 0.5]. This
ensures that during the transition period the overall
performance of RED should still be acceptable, even though
the

The algorithm for Adaptive RED is given in Figure :2
average queue size might not be in its target range, and the
average delay or throughput might suffer slightly. We do not
claim that our algorithm for Adaptive RED is optimal, or even
close to optimal, but it seems to work well in a wide range of
scenarios, and we believe that it could Safely be deployed
now in RED implementations in the Internet. As a result of the
slow adaptation of maxp , the design of Adaptive RED gives
robust performance in a wide range of environments. As
stated above, the cost of this slow adaptation is that of a
transient period, after a sharp change in the level of
congestion, when the average queue size is not within the
target zone. Adaptive RED is thus consciously positioned in

the conservative, robust end of the spectrum of AQM
mechanisms, with the aim of avoiding the more finely-tuned
but also more fragile dynamics at the more aggressive end of
the spectrum.

Adaptive RED’s algorithm in Figure :2 uses AIMD
to adapt maxp while we experimented with other linear
controls such as MIMD (Multiplicative Increase
Multiplicative Decrease) as well as proportional error controls,
as might be suggested by some control-theoretic analyses; our
experiences have been that the AIMD approach is more robust.
IV.1 The range for maxp
The upper bound of 0.5 on maxp can be justified on two
grounds. First, we are not trying to optimize RED for packet
drop rates greater than 50%. In addition, because we use RED
in gentle mode, this means that the packet drop rate varies
from 1 to maxp as the average queue size varies from minth to
maxth, and the packet drop rate varies from max p to as the
average queue size varies from maxth to twice maxth. With
maxp set to 0.5, the packet drop rate varies from 0 to 1 as the
average queue size varies from minth to twice maxth. This
should give somewhat robust performance even with packet
drop rates greater than 50%. The upper bound of 0.5 on max p
means that when the packet drop rate exceeds 25%, the
average queue size could exceed the target range by up to a
factor of four4
IV.2 The Parameters and

We note that it takes at least 0.49/ intervals for maxp to
increase from 0.01 to 0.50; this is 24.5 seconds for out fault
parameters for and interval similarly, it takes at least log

0.02/log interval for maxp to decrease from 0.50 to 0.01;

with our default parameters, this is 20.1 seconds. Given a
sharp change from one level of congestion to another, 258
seconds is therefore a upper bound on the interval during
which the average queue size could be outside its target range
and the performance of the AQM might be some what
degraded. Thus assuming p < maxp, when maxp increases by ,
avg can be expected to decrease from

to

. This is

a decrease of .
As long as this is less than 0.2 (maxth-mi th), the average queue
size should not change from above the target range to below
the target range in a single interval. This suggests choosing

 < 0.2, or equivalently. < 0.25 maxp. Our

default setting of obeys this constraint.
IV.3 setting RED parameters maxth and wq
As described above, Adaptive RED removes RED’s
dependence on the parameter maxp to reduce the need for
other parameter-tuning for RED, we also specify procedures
for automatically setting the RED parameters maxth and wq.
The guidelines for setting wq given in the original RED are in

Every Interval seconds:
If (avg >target and maxp ≤ 0.5)
Increase max p:
maxp maxp +
elseif (avg<target and maxp ≥0.01)
decrease maxp:
maxp maxp * ;
Variables:
avg : average queue size
fixed parameters:
interval :time 0.5 seconds
target : target for avg;
[minth + 0.4 * (maxth – minth),minth+0.6 *(maxth
– minth)].

 : increment; min(0.01, maxp/4

Sridhar kumar.Majoju et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (4) , 2011, 1549-1554

1553

terms of the transient queue size accommodated by RED, and
the time required by the estimator to respond to a step change
in the actual queue size. if the queue size changes from one
value to another, it takes -1/ln(1-wq) packet arrivals for
the average queue to reach 63% of the way to the new value.
Thus, we refer to -1/ln(1-wq) as the “time constant” of the
estimator for the average queue size, even though this “time
constant” is specified in packet arrivals and not in time itself.
The default in the NS simulator is for wq to be set to 0.002;
this corresponds to a time constant of 500 packet
arrivals. However, for a 1 Gbps link with 500-byte
packets,500 packet arrivals corresponds to a small fraction of
a round-trip time (1/50-th of an assumed round-trip time of
100 ms). For RED in automatic mode, we set wq to give a
time constant for the average queue size estimator of one
second; this is equivalent to ten round-trip times, assuming a
default round-trip time of 100 ms. Thus, we set

Where C is the link capacity in packets / second, computed for
packets of the specified default size.

V. SIMULATIONS
The simulations that Adaptive RED, by automatically setting
wq. and continually adapting maxp achieves the goals of high
throughput and low average queuing delays across a wide
variety of conditions. In this section we more closely examine
three aspects Adaptive RED’s behavior: oscillations, effects of
wq and response to routing dynamics.
V.1 Exploring Oscillations
 The feedback nature of TCP’s congestion control, oscillations
in the queue length are very common. Some oscillations are
“malignant”, in that they degrade overall throughput and
increase variance in queuing delay; other oscillations are
“benign” oscillations and do not significantly effect either
throughput or delay.

VI. CONCLUSION
However indentifying, validating and resending the dropped
packets is typical but necessary task to minimize the loss of
data. ARED allow us to identify and resend the data to their
respective destinations by validating them with Chi-Square.
Loop of this algorithm dynamically changes its parameter
value to start the range of identification from beginning (0.01).
Re-starting the loop takes time to change the parameter value
and it depends on size of the dropped packets in queue. Due to
change in average queue size the response time will be slow
and infrequently changes. ARED is not optimal but it seems to
work well in a wide range of scenarios and it also controls the
proportional errors. ARED algorithm cannot identify the
dropped packets if the packet(s) size is ranges from 0.01 to 0.5
(1% and 50% respectively). It also increases the range value
in the next sprint of the algorithm but it cannot reach to 100%
due to limit of link capacity. In future work, to explore the use
of Adaptive RED in virtual queues with goal of providing
minimal average queuing delays.

ACKNOWLEDGMENTS
We thank our thesis advisors, Associate professors D.Sagar,
Khaja Ziauddin, T.P.Shekhar and Challa Thirupathi, for there

Support and guidance. There energy and insight at all levels
are a Constant inspiration.

REFERENCES
[1] X. Ao, Report on DIMACS Workshop on Large-Scale

InternetAttacks,http://dimacs.rutgers.edu/Workshops/Attacks/internet-
attack-9-03.pdf, Sept. 2003.

[2] R. Thomas, ISP Security BOF, NANOG 28, http://www.nanog.org/mtg-
0306/pdf/thomas.pdf, June 003.

[3] [3] K.A. Bradley, S. Cheung, N. Puketza, B. Mukherjee, and R.A.
Olsson, “Detecting Disruptive Routers: A Distributed Network
Monitoring Approach,” Proc. IEEE Symp. Security and Privacy (S&P
’98), pp. 115-124, May 1998.

[4] A.T. Mizrak, Y.-C. Cheng, K. Marzullo, and S. Savage, “Detecting and
Isolating Malicious Routers,” IEEE Trans. Dependable and Secure
Computing, vol. 3, no. 3, pp. 230-244, July-Sept. 2006.

[5] L. Subramanian, V. Roth, I. Stoica, S. Shenker, and R. Katz, “Listen and
Whisper: Security Mechanisms for BGP,” Proc. First Symp. Networked
Systems Design and Implementation (NSDI ’04), Mar. 2004.

[6] J. Aweya, M. Ouellette, D. Y. Montuno and A. Chapman. Enhancing
TCP Performance with a Loadadaptive RED Mechanism. International
Journal of Network Management, V. 11, N. 1, 2001

[7] J. Aweya, M. Ouellette, D. Y. Montuno and A. Chapman.A Control
Theoretic Approach to Active Queue Management. Computer Networks
36, 2001.

[8] J. Aweya, M. Ouellette, D. Y. Montuno and A. Chapman. An
Optimization-oriented View of Random Early etection. Computer
Communications, 2001,to appear.

[9] Brakmo, L., O’Malley, S., Peterson, L., “TCP Vegas: New Techniques
for Congestion Detection and Avoidance,” SIGCOMM’94

[10] Claffy, K., Braun, H-W., Polyzos, G., “A Parameterizable Methodology
for Internet Traffic Flow Profiling,” IEEE Journal on Selected Areas in
Communications, March 1995.

[11] Eldridge, C., “Rate Controls in Standard Transport Protocols,”ACM
Computer Communication Review, July 1992.

[12] Fall, K., Floyd S., “Simulation-based Comparisons of Tahoe, Reno, and
SACK TCP,” Computer Communication Review, July 1996.

[13] Eldridge, C., “Rate Controls in Standard Transport Protocols,”ACM
Computer Communication Review, July 1992.

[14]] Adaptive RED: An Algorithm for Increasing the Robustness of
RED’sActive Queue Management. Sally Floyd, Ramakrishna Gummadi,
and Scott Shenker August 1, 2001.

Sridhar kumar.Majoju et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (4) , 2011, 1549-1554

1554

